Rabu, 31 Oktober 2012

TEKNOLOGI INTERFACE DAN LINGKUNGAN KOMPUTASINYA


Teknologi interface itu adalah teknologi yang mempertemukan jaringan komunikasi dan teknologi informasi yang berhubungan dengan pengoperasian oleh pengguna. Kalau di jadikan contoh sih seperti pada komputer saja. Perangkat keras atau Hardware membutuhkan suatu sistem operasi untuk menghubungkannya dengan si user. Kegunaan interface itu sendiri juga untuk memudahkan user dalam mengakses informasi yang ada dalam komputer tersebut. Semakin berkembangnya zaman, interface pun sudah benar-benar interaktif bahkan sangat memudahkan penggunaannya terhadap user.

Lingkungan komputasinya sudah sangat berkembang. Tadinya si komputer sendiri hanya digunakan sebagai alat hitung seperti halnya kalkulator sekarang. Interfacenya juga sangat tidak memudahkan user untuk mengaksesnya. Tetapi sekarang teknologi sudah berkembang pesat. Komputer pun sudah bisa di bawa kemana-mana karena sudah berbentuk portable. Interface dari semua sistem operasi pun juga sudah sangat menarik dan dinamis. Dengan dukungan hardware yang sudah berspesifikasi tinggi, user tidak akan mengalami kesulitan lagi dalam mengakses semua informasi yang ada di sebuah komputer.

SPEECH RECOGNATION DAN MIDDLEWARE TELEMATIKA


     SPEECH RECOGNITION
    Speech Recognition adalah proses identifikasi suara berdasarkan kata yang diucapkan dengan melakukan konversi sebuah sinyal akustik, yang ditangkap oleh audio device (perangkat input suara).
Speech Recognition juga merupakan sistem yang digunakan untuk mengenali
perintah kata dari suara manusia dan kemudian diterjemahkan menjadi suatu data
yang dimengerti oleh komputer. Pada saat ini, sistem ini digunakan untuk
menggantikan peranan input dari keyboard dan mouse.
Keuntungan dari sistem ini adalah pada kecepatan dan kemudahan dalam penggunaannya. Kata – kata yang ditangkap dan dikenali bisa jadi sebagai hasil akhir, untuk sebuah aplikasi seperti command & control, penginputan data, dan persiapan dokumen. Parameter yang dibandingkan ialah tingkat penekanan suara yang kemudian akan dicocokkan dengan template database yang tersedia. Sedangkan sistem pengenalan suara berdasarkan orang yang berbicara dinamakan speaker recognition. Pada makalah ini hanya akan dibahas mengenai speech recognition karena kompleksitas algoritma yang diimplementasikan lebih sederhana daripada speaker recognition. Algoritma yang akan diimplementasikan pada bahasan mengenai proses speech recognition ini adalah algoritma FFT (Fast Fourier Transform), yaitu algoritma yang cukup efisien dalam pemrosesan sinyal digital (dalam hal ini suara) dalam bentuk diskrit. Algoritma ini mengimplementasikan algoritma Divide and Conquer untuk pemrosesannya. Konsep utama algoritma ini adalah mengubah sinyal suara yang berbasis waktu menjadi berbasis frekuensi dengan membagi masalah menjadi beberapa upa masalah yang lebih kecil. Kemudian, setiap upa masalah diselesaikan dengan cara melakukan pencocokan pola digital suara.
     SEJARAH SPEECH RECOGNITION
Biometrik, termasuk di dalamnya speech recognition, secara umum digunakan untuk identifikasi dan verifikasi. Identifikasi ialah mengenali identitas subyek, dilakukan perbandingan kecocokan antara data biometric subyek dalam database berisi record karakter subyek. Sedangkan verifikasi adalah menentukan apakah subyek sesuai dengan apa yang dikatakan terhadap dirinya.
Biometrik merupakan suatu metoda untuk mengenali manusia berdasarkan pada satu atau lebih ciri-ciri fisik atau tingkah laku yang unik. Biometric Recognition atau biasa disebut dengan Sistem pengenalan biometric mengacu pada identifikasi secara otomatis terhadap manusia berdasarkan psikological atau karakteristik tingkah laku manusia. Ada beberapa jenis teknologi biometric antara lain suara (speech recognition).
Metode Hidden Markov Model mulai diperkenalkan dan dipelajari pada akhir tahun 1960, metode yang berupa model statistik dari rantai Markov ini semakin banyak dipakai pada tahun-tahun terakhir terutama dalam bidang speech recognition, seperti dijelaskan oleh Lawrence R. Rabiner dalam laporannya yang berjudul “A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition”
Proses dalam dunia nyata secara umum menghasilkan observable output yang dapat dikarakterisasikan sebagai signal. Signal bisa bersifat diskrit (karakter dalam alfabet) maupun kontinu (pengukuran temperatur, alunan musik). Signal bisa bersifat stabil (nilai statistiknya tidak berubah terhadap waktu) maupun nonstabil (nilai signal berubah-ubah terhadap waktu). Dengan melakukan pemodelan terhadap signal secara benar, dapat dilakukan simulasi terhadap sumber dan pelatihan sebanyak mungkin melalui proses simulasi tersebut. Sehingga model dapat diterapkan dalam sistem prediksi, sistem pengenalan, maupun sistem identifikasi. Secara garis besar model signal dapat dikategorikan menjadi 2 golongan yaitu : model deterministik dan model statistikal. Model deterministik menggunakan nilai-nilai properti dari sebuah signal seperti : amplitudo, frekuensi, fase dari gelombang sinus. Sedangkan model statistikal menggunakan nilai-nilai statistik dari sebuah signal seperti: proses Gaussian, proses Poisson, proses Markov, dan proses Hidden Markov.
Suatu model HMM secara umum memiliki unsur-unsur sebagai berikut:
· N, yaitu jumlah state dalam model. Secara umum state saling terhubung satu dengan yang lain, dan suatu state bisa mencapai semua state yang lain dan sebaliknya (disebut model ergodic). Namun hal tersebut tidak mutlak, terdapat kondisi lain dimana suatu state hanya bisa berputar ke diri sendiri dan berpindah ke satu state berikutnya, hal ini bergantung pada implementasi dari model.
· M, yaitu jumlah observation symbol secara unik pada tiap statenya, misalnya: karakter dalam alfabet, dimana state adalah huruf dalam kata.
· State Transition Probability { } -> ij A a
· Observation Symbol Probability pada state j, { } () -> j Bb k
· Initial State Distribution -> i p p
Dengan memberikan nilai pada N, M, A, B, dan p , HMM dapat digunakan sebagai generator untuk menghasilkan urutan observasi. dimana tiap observasi t o adalah salah satu simbol dari V, dan T adalah jumlah observasi dalam suatu sequence.
     SKEMA UTAMA DAN ALGORITMA SPEECH RECOGNITION
Terdapat 4 langkah utama dalam sistem pengenalan suara:
· Penerimaan data input
· Ekstraksi, yaitu penyimpanan data masukan sekaligus pembuatan database untuk template.
· Pembandingan / pencocokan, yaitu tahap pencocokan data baru dengan data suara (pencocokan tata bahasa) pada template.
· Validasi identitas pengguna.



Secara umum, speech recognizer memproses sinyal suara yang masuk dan menyimpannya dalam bentuk digital. Hasit proses digitalisasi tersebut kemudian dikonversi dalam bentuk spektrum suara yang akan dianalisa dengan membandingkannya dengan template suara pada database sistem.


Gambar 2. Spektrum Suara

Sebelumnya, data suara masukan dipilah-pilah dan diproses satu per satu berdasarkan urutannya. Pemilahan ini dilakukan agar proses analisis dapat dilakukan secara paralel. Proses yang pertama kali dilakukan ialah memproses gelombang kontinu spektrum suara ke dalam bentuk diskrit. Langkah berikutnya ialah proses kalkulasi yang dibagi menjadi dua bagian :
· Transformasi gelombang diskrit menjadi array data.
· Untuk masing-masing elemen pada aiTay data, hitung "ketinggian" gelombang (frekuensi).
Objek permasaiahan yang akan dibagi adalah masukan berukuran n, berupa data diskrit gelombang suara.
Ketika mengkonversi gelombang suara ke dalam bentuk diskrit, gelombang diperlebar dengan cara memperinci berdasarkan waktu. Hal ini dilakukan agar proses algontma seianjutnya (pencocokan) lebih mudah diiakukan. Namun, efek buruknya ialah array of array data yang terbentuk akan lebih banyak.


Gambar 3. Contoh Hasit Konversi Sinyal Diskrit

Dari tiap elemen array data tersebut, dikonversi ke dalam bentuk bilangan biner. Data biner tersebut yang nantinya akan dibandingkan dengan template data suara.
Proses divide and conquer:
· Pilih sebuah angkaN, dimana N merupakan bilangan bulat kelipatan 2.Bilangan ini berfungsi untuk menghitung jumlah elemen transformasi FFT.
· Bagi dua data diskrit secara (dengan menerapkan algoritma divide and conquer) menjadi data diskrit yang lebih kecii berukuran N = N,.N2.
· Objek data dimasukkan ke dalam table (sebagai elemen tabel).
· Untuk setiap eiemen data, dicocokkan dengan data pada template (pada data template juga dilakukan pemrosesan digitaiisasi menjadi data diskrit, dengan cara yang sama dengan proses digitaiisasi data masukan bam yang ingin dicocokkan).
· Setiap upa masalah disatukan kembali dan dianalisis secara keseluruhan, kecocokan dari segi tata bahasa dan apakah data yang diucapkan sesuai dengan kata yang tersedia pada template data.
· Verifikasi data. Jika sesuai, proses iebih lanjut, sesuai dengan aplikasi yang mengimplementasikan algoritma ini.
     IMPLEMENTASI SPEECH RECOGNITION
Hardware yang dibutuhkan dalam implementasi Speech Recognition :
· Sound card : Merupakan perangkat yang ditambahkan dalam suatu Komputer yang fungsinya sebagai perangkat input dan output suara untuk mengubah sinyal elektrik, menjadi analog maupun menjadi digital.
· Microphone : Perangkat input suara yang berfungsi untuk mengubah suara yang melewati udara, air dari benda orang menjadi sinyal elektrik.
· Komputer atau Komputer Server : Dalam proses suara digital menterjemahkan gelombang suara menjadi suatu simbol biasanya menjadi suatu nomor biner yang dapat diproses lagi kemudian diidentifikasikan dan dicocokan dengan database yang berisi berkas suara agar dapat dikenali.
Contoh Implementasi teknologi Speech Recognition :
Saat ini pada tahun 2010 Microsoft windows vista dan windows 7 , speech recognition telah disertakan dalam system operasinya . sebagaimana fungsi dari speech recognition menterjemahkan pengucapan kata – kata kedalam bentuk teks digital. Salah satu implementasi speech recognition adalah pada konfrensi PBB dimana seluruh Negara tergabung dalam keanggotaan nya , fungsi speech recognition dalam hal ini menterjemahkan bahasa pembicara dari suatu Negara kedalam bahasa yang dipahami pendengar . Contoh penggunaan lain speech recognition adalah Perawatan kesehatan.
Dalam perawatan kesehatan domain, bahkan di bangun meningkatkan teknologi pengenalan suara, transcriptionists medis (MTs) belum menjadi usang. Layanan yang diberikan dapat didistribusikan daripada diganti. Pengenalan pembicaraan dapat diimplementasikan di front-end atau back-end dari proses dokumentasi medis. Front-End SR adalah salah satu alat untuk mengidentifikasi kata-kata yang ucapkan dan ditampilkan tepat setelah mereka berbicara Back-End SR atau SR tangguhan adalah di mana penyedia menentukan menjadi sebuah sistem dikte digital, dan suara yang diarahkan melalui pidato-mesin pengakuan dan draft dokumen diakui dirutekan bersama dengan file suara yang asli ke MT / editor, yang mengedit draft dan memfinalisasi laporan. Ditangguhkan SR sedang banyak digunakan dalam industri saat ini.
Banyak aplikasi Electronic Medical Records (EMR) dapat menjadi lebih efektif dan dapat dilakukan lebih mudah bila digunakan dalam hubungannya dengan pengenalan-mesin bicara. Pencarian, query, dan pengisian formulir semua bisa lebih cepat untuk melakukan dengan suara dibandingkan dengan menggunakan keyboard.




MIDDLEWARE TELEMATIKA

Pengertian



Middleware Didefinisikan sebagai sebuah aplikasi yang secara logic berada diantara lapisan aplikasi (application layer) dan lapisan data dari sebuah arsitektur layer-layer TCP/IP [1]. Middleware bisa juga disebut protokol. Protokol komunikasi middleware mendukung layanan komunikasi aras tinggi. Pengertian yang lain yaitu :

= Software yang berfungsi sebagai lapisan konversi atau penerjemah.
= Software penghubung yang berisi sekumpulan layanan yang memungkinkan beberapa proses dapat berjalan pada satu atau lebih mesin untuk saling berinteraksi pada suatu jaringan
= Juga sebagai integrator.
= Middleware saat ini dikembangkan untuk memungkinkan satu aplikasi berkomunikasi dengan lainnya walaupun berjalan pada platform yang berbeda.
= Biasa dipakai saat bermigrasi

Contoh Middleware
- Java’s: Remote Procedure Call
- Object Management Group's: Common Object Request Broker Architecture (CORBA)
- Microsoft's COM/DCOM (Component Object Model)
- Also .NET Remoting

Layanan Middleware

Menyediakan kumpulan fungsi API (Application Programming Interfaces) yang lebih tinggi daripada API yang disediakan sistem operasi dan layanan jaringan yang memungkinkan suatu aplikasi dapat :
= Mengalokasikan suatu layanan secara transparan pada jaringan
= Menyediakan interaksi dengan aplikasi atau layanan lain
= Diperluas (dikembangkan) kapasitasnya tanpa kehilangan fungsinya.

Contoh Layanan Middleware

> Transaction Monitor
1. Produk pertama yang disebut middleware.
2. Menempati posisi antara permintaan dari program client dan database, untuk menyakinkan bahwa semua transaksi ke database terlayani dengan baik

> Messaging Middleware
1. Menyimpan data dalam suatu antrian message jika mesin tujuan sedang mati atau overloaded
2. Mungkin berisi business logic yang merutekan message ke ujuan sebenarnya dan memformat ulang data lebih tepat
3. Sama seperti sistem messaging email, kecuali messaging middleware digunakan untuk mengirim data antar aplikasi


Contoh Layanan Middleware

* Distributed Object Middleware
Contoh: RPC, CORBA dan DCOM/COM
* Middleware basis data
menyediakan antarmuka antara sebuah query dengan beberapa database yang terdistribusi
Contoh: JDBC, ODBC, dan ADO.NET
* Application Server Middleware
J2EE Application Server, Oracle Application Server


sumber : 

COMPUTER VISION


Pengertian
Computer vision merupakan proses otomatis yang mengintegrasikan sejumlah besar proses untuk persepsi visual, seperti akuisisi citra, pengolahan citra, pengenalan dan membuat keputusan. Computer vision mencoba meniru cara kerja sistem visual manusia (human vision) yang sesungguhnya sangat kompleks. Untuk itu, computer vision diharapkan memiliki kemampuan tingkat tinggi sebagaimana human visual.
Kemampuan itu diantaranya adalah:
  • Object detection → Apakah sebuah objek ada pada scene? Jika begitu, dimana batasan-batasannya..?
  • Recognation → Menempatkan label pada objek.
  • Description → Menugaskan properti kepada objek.
  • 3D Inference → Menafsirkan adegan 3D dari 2D yang dilihat.
  • Interpreting motion → Menafsirkan gerakan.
Computer Vision sering didefinisikan sebagai salah satu cabang ilmu pengetahuan yang mempelajari bagaimana komputer dapat mengenali obyek yang diamati/ diobservasi. Cabang ilmu ini bersama intelijensia semu (Artificial Intelligence) akan mampu menghasilkan sistem intelijen visual (Visual Intelligence System).
Computer Vision adalah kombinasi antara Pengolahan Citra dan Pengenalan Pola.
  • Pengolahan Citra (Image Processing) merupakan bidang yang berhubungan dengan proses transformasi citra/gambar (image). Proses ini bertujuan untuk mendapatkan kualitas citra yang lebih baik.
Sedangkan,
  • Pengenalan Pola (Pattern Recognition), bidang ini berhubungan dengan proses identifikasi obyek pada citra atau interpretasi citra. Proses ini bertujuan untuk mengekstrak informasi/pesan yang disampaikan oleh gambar/citra.

Hirarki pada Computer Vision
Hirarki pada computer vision ada 3 tahap, yaitu:
  • Pengolahan Tingkat Rendah (Image to image) → Menghilangkan noise, dan peningkatan gambar (enchament image).
  • Pengolahan  Tingkat Menengah (Image to dimbolic) → Kumpulan garis / vektor yang merepresentasikan batas sebuah obyek pada citra.
  • Pengolah Tingkat Tinggi (Simbolic to simbolic) → Representasi simbolik batas-batas obyek menghasilkan nama obyek tersebut.

Tahapan proses dalam Computer Vision
Sebuah komputer yang menyerupai kemampuan manusia dalam menangkap sinyal visual (human sight) dilakukan dalam empat tahapan proses dasar :
  • Proses penangkapan citra/gambar (image acquisition),
  • Proses pengolahan citra (image processing),
  • Analisa data citra (image analysis) dan
  • Proses pemahaman data citra (image understanding)

1.     Image Acqusition
  • Image Acqusition pada manusia dimulai dengan mata, kemudian informasi visual diterjemahkan ke dalam suatu format yang kemudian dapat dimanipulasi oleh otak.
  • Senada dengan proses di atas, computer  vision membutuhkan sebuah mata untuk menangkap sebuah sinyal visual.
  • Umumnya mata pada computer vision adalah sebuah kamera video.
  • Kamera menerjemahkan sebuah scene atau image
  • Kemudian sinyal listrik ini diubah menjadi bilangan biner yang akan digunakan oleh komputer untuk pemrosesan.
  • Keluaran dari kamera adalah berupa sinyal analog, dimana frekuensi dan amplitudonya (frekuensi berhubungan dengan jumlah sinyal dalam satu detik, sedangkan amplitudo berkaitan dengan tingginya sinyal listrik yang dihasilkan) merepresentasikan detail ketajaman (brightness) pada scene.
  • Kamera mengamati sebuah kejadian pada satu jalur dalam satu waktu, memindainya dan membaginya menjadi ratusan garis horizontal yang sama.
  • Tiap‐tiap garis membuat sebuah sinyal analog yang amplitudonya menjelaskan perubahan brightness sepanjang garis sinyal tersebut.
  • Karena komputer tidak bekerja dengan sinyal analog, maka sebuah analog‐to‐digital converter (ADC), dibutuhkan untuk memproses semua sinyal tersebut oleh komputer.
  • ADC ini akan mengubah sinyal analog yang direpresentasikan dalam bentuk informasi sinyal tunggal ke dalam sebuah aliran (stream) sejumlah bilangan biner.
  • Bilangan biner ini kemudian disimpan di dalam memori dan akan menjadi data rawyang akan diproses.
2.     Image Processing
  • Tahapan berikutnya computer vision akan melibatkan sejumlah manipulasi utama (initial manipulation) dari data binary tersebut.
  • Image processing membantu peningkatan dan perbaikan kualitas image, sehingga dapat dianalisa dan diolah lebih jauh secara lebih efisien.
  • Imagge processing akan meninggkatkan perbandingan sinyal terhadap noise (signal‐to‐noise ratio = s/n).
  • Sinyal‐sinyal tersebut adalah informasi yang akan merepresentasikan objek yang ada dalam image.
  • Sedangkan noise adalah segala bentuk interferensi, kekurang pengaburan, yang terjadi pada sebuah objek.
3.     Image Analysis
  • Image analysis akan mengeksplorasi scene ke dalam bentuk karateristik utama dari objek melalui suatu proses investigasi.
  • Sebuah program komputer akan mulai melihat melalui bilangan biner yang merepresentasikan informasi visual untuk mengidentifikasi fitur-fitur spesifik dan karakteristiknya.
  • Lebih khusus lagi program image analysis digunakan untuk mencari tepi dan batas‐batasan objek dalam image.
  • Sebuah tepian (edge) terbentuk antara objek dan latar belakangnya atau antara dua objek yang spesifik.
  • Tepi ini akan terdeteksi sebagai akibat dari perbedaan level brightness pada sisi yang berbeda dengan salah satu batasnya.
4.     Image Understanding
  • Ini adalah langkah terakhir dalam proses computer vision, yang mana spesifik objek dan hubungannya diidentifikasi.
  • Pada bagian ini akan melibatkan kajian tentang teknik‐teknik artificial intelligent.
  • Understanding berkaitan dengn template matching yang ada dalam sebuah scene.
  • Metoda ini menggunakan program pencarian (search program) dan teknik penyesuaian pola (pattern matching techniques).

Aplikasi Computer Vision
Sebagai teknologi disiplin, visi komputer berusaha untuk menerapkan teori dan model untuk pembangunan sistem visi komputer.
Aplikasi pada visi komputer mencakup berbagai macam sistem, yaitu:
  1. Pengendalian proses (misalnya, sebuah robot industri atau kendaraan otonom).
  2. Mendeteksi peristiwa (misalnya, untuk pengawasan visual atau orang menghitung).
  3. Mengorganisir informasi (misalnya, untuk pengindeksan database foto dan gambar urutan).
  4. Modeling benda atau lingkungan (misalnya, industri inspeksi, analisis gambar medis / topografis).
  5. Interaksi (misalnya, sebagai input ke perangkat untuk interaksi manusia komputer).
  6. Sub-domain visi komputer meliputi adegan rekonstruksi, acara deteksi, pelacakan video, pengenalan obyek, belajar, pengindeksan, gerak estimasi, dan gambar restorasi.

TANGIBLE USER INTERFACE


Dalam dunia telematika terdapat teknologi yang menggunakan interface telematika salah satunya adalah Tangible User Interface. Tangible User Interface merupakan user interface dimana seseorang berinteraksi dengan perangkat digital melalui lingkungan fisik secara langsung.

Sejarah Tangible User Interface 
pada awalnya Tangible User Interface memiliki nama awal Graspable User Interface, namun kini nama tersebut tidak lagi di gunakan. Orang yang pertama kali mempelopori user interface yang nyata adalah Hiroshi Ishii, seorang profesor di MIT Media Laboratory yang mengepalai Tangible Media Group. Visi adalah membuat User Interface yang nyata yang disebut Bits Tangible, adalah memberikan bentuk fisik ke informasi digital, membuat bit secara langsung dimanipulasi dan mencolok.

Orang-orang telah mengembangkan keterampilan canggih untuk merasakan dan memanipulasi lingkungan fisik mereka. Namun, sebagian besar keterampilan ini tidak digunakan dalam interaksi dengan dunia digital saat ini. Interaksi dengan informasi digital saat ini sebagian besar terbatas pada Graphical User Interface (GUI).Dengan keberhasilan komersial Apple Macintosh dan Microsoft Windows, GUI telah menjadi paradigma standar untuk Human Computer Interaction (HCI) hari ini. GUI merupakan informasi (bit) dengan piksel pada layar bit-dipetakan.

Mereka representasi grafis yang dapat dimanipulasi dengan remote controller generik seperti mouse dan keyboard. Dengan representasi decoupling (piksel) dari kontrol (perangkat input) dengan cara ini, GUI memberikan kelenturan untuk meniru berbagai media grafis. Namun, ketika kita berinteraksi dengan dunia GUI, kita tidak bisa mengambil keuntungan dari ketangkasan kita atau memanfaatkan keterampilan kita untuk memanipulasi berbagai benda-benda fisik seperti manipulasi blok bangunan atau kemampuan untuk membentuk model dari tanah liat.

Pada pertengahan sembilan puluhan perpindahan dari GUI untuk Antarmuka Pengguna Berwujud. TUI menunjukkan cara baru untuk mewujudkan visi Mark Weiser’s Ubiquitous Computing tenun teknologi digital ke dalam kain lingkungan fisik dan membuatnya terlihat.

Alih-alih membuat piksel melebur menjadi berbagai macam antarmuka yang berbeda, TUI menggunakan bentuk fisik yang nyata yang dapat ditampung mulus ke lingkungan fisik pengguna. Berwujud User Interfaces (TUIs) bertujuan untuk memanfaatkan keterampilan ini interaksi haptic, yang secara signifikan pendekatan yang berbeda dari GUI.


Ide kunci Tangible User Interface adalah memberikan bentuk fisik ke informasi digital . Bentuk fisik yang berfungsi sebagai representasi baik dan kontrol untuk rekan-rekan digital mereka. Tangible User Interface membuat informasi digital secara langsung manipulatable dengan hasil karya pengguna , dan tampak melalui indera perifer kita dengan bentuk fisik yang berwujud.



Karakteristik Antarmuka Pengguna Tangible 

• representasi fisik adalah komputasi digabungkan dengan informasi digital yang mendasari.
• representasi fisik mewujudkan mekanisme kontrol interaktif.
• representasi fisik adalah perseptual digabungkan dengan representasi digital secara aktif dimediasi.
• keadaan fisik tangibles mencakup aspek kunci dari negara digital sistem


Contoh Tangible User Interface 

  • Mesin Penjawab Marmer oleh Durrell Uskup (1992). marmer adalah merupakan suatu pesan yang ditinggalkan di mesin penjawab. Menjatuhkan marmer ke piring pemutar,lalu memutar ulang pesan yang terkait.

  • sistem Topobo. Blok di Topobo seperti blok LEGO yang bisa diambil bersama-sama, tetapi juga dapat bergerak sendiri menggunakan komponen bermotor.Seseorang dapat mendorong, menarik, dan memutar blok-blok, dan blok-blok bisa menghafal gerakan-gerakan ini dan menggulang kembali gerakan-gerakan tersebut.

HEAD UP DISPLAY SYSTEM

Head-up display, atau disingkat HUD, adalah setiap tampilan yang transparan menyajikan data tanpa memerlukan pengguna untuk melihat diri dari sudut pandang atau yang biasa. Asal usul nama berasal dari pengguna bisa melihat informasi dengan kepala “naik” (terangkat) dan melihat ke depan, bukan memandang miring ke instrumen yang lebih rendah.


1. Sejarah HUD

HUD pertama kali diperkenalkan pada tahun 1950-an, dengan adanya teknologi reflektif gunsight pada perang dunia ke dua. Saat itu, suatu tembakan dihasilkan dari sumber listrik yang diproyeksikan ke sebuah kaca. Pemasangan proyektor itu biasanya dilakukan pada bagian atas panel instrumen di tengah daerah pandang pilot, antara kaca depan dan pilot sendiri.

Dengan menggunakan reflektif gunshight pada pertempuran udara, pilot harus “mengkalibrasi” pandangannya secara manual. Hal ini dilakukan dengan memasukkan lebar sayap target pada sebuah penyetelan roda yang diikuti dengan penyesuaian mata, sehingga target yang bergerak dapat disesuaikan dengan bingkai yang diarahkan kepadanya. Dengan melakukan hal tersebut, maka hasilnya akan terjadi kompensasi terhadap kecepatan, penembakan peluru, G-load, dll.


Pada tahun 1950-an, gambar dari efletif gunsight diproyeksikan ke sebuah CRT (Cathode Ray Tube) yang dikendalikan oleh komputer yang terdapat pada pesawat. Hal inilah yang menandai kelahiran teknologi HUD modern. Komputer mampu mengkompensasi akurasi dan menyesuaikan tujuan dari kursor secara otomatis terhadap faktor, seperti range, daya percepatan, tembakan peluru, pendekatan target, G-load, dll.


Penambahan data penerbangan terhadap tanda bidikan, memberikan perananan kepada HUD sebagai pembantu pilot dalam melakukan pendaratan, serta membantu pilot di dalam pertempuran udara. Pada tahun 1960-an, HUD digunakan secara ekstensif dalam melakukan pendaratan. HUD menyediakan data-data penerbangan penting kepada pilot, sehingga pilot tidak perlu melihat peralatan pada bagian dalam dari panel.

Penerbangan komersial HUD pertama kali diluncurkan pada tahun 1980-an. HUD pertama kali digunakan oleh Air Inter pada pesawat MD-80. Namun, masih tergantung pada FD pesawat untuk bimbingan dan hanya bekerja sebagai repeater informasi yang ada. Pada tahun 1984, penerbangan dinamika Rockwell Collins sudah berkembang dan mendapatkan sertifikasi HUD “standalone” yangpertama sebagai pesawat komersial, yang disebut HGS (Head Up Guidance System). Sistem “stand alone” ini mendatangkan kesempatan untuk mengurangi waktu lepas landas dan pendaratan minimum. Pada tahun 1984, FAA menyetujui pendaratan CAT IIIA tanpa menyediakan pemasangan sistem autoland atau autothrottle pada pesawat yang dilengkapi dengan HGS.

Sampai beberapa tahun yang lalu, Embraer 190 dan Boeing 737 New Generation Aircraft (737-600,700,800, dan 900 series) adalah satu-satunya pesawat penumpang komersial untuk datang dengan HUD opsional. Namun, kini teknologi ini sudah menjadi lebih umum untuk pesawat seperti Canadair RJ, Airbus A318 dan beberapa jet bisnis. HUD telah menjadi peralatan standar Boeing 787. Dan lebih jauh lagi, Airbus A320, A330, A340 dan A380 keluarga yang sedang menjalani proses sertifikasi untuk HUD. Selain pada pesawat komersial, HUD juga sudah mulai digunakan pada mobil dan aplikasi lainnya. BMW merupakan pabrikan otomotif pertama yang meluncurkan produk massal dengan teknologi HUD pada kaca depannya. Teknologi ini tak hanya memberi kenyamanan bagi pengemudi, melainkan juga keselamatan berkendara.

HUD terbagi menjadi 3 generasi yang mencerminkan teknologi yang digunakan untuk menghasilkan gambar, yaitu:


♥ Generasi Pertama – Gunakan CRT untuk menghasilkan sebuah gambar pada layar fosfor, memiliki kelemahan dari degradasi dari waktu ke waktu dari lapisan layar fosfor. Mayoritas HUDs beroperasi saat ini adalah dari jenis ini.


♥ Generasi Kedua – Gunakan sumber cahaya padat, misalnya LED, yang dimodulasi oleh sebuah layar LCD untuk menampilkan gambar. Ini menghilangkan memudar dengan waktu dan juga tegangan tinggi yang dibutuhkan untuk sistem generasi pertama. Sistem ini pada pesawat komersial.


♥ Generasi Ketiga – Gunakan waveguides optik untuk menghasilkan gambar secara langsung dalam Combiner daripada menggunakan sistem proyeksi.


Penggunaan HUD dapat dibagi menjadi 2 jenis. Jenis pertama adalah HUD yang terikat pada badan pesawat atau kendaraan chasis. Sistem penentuan gambar yang ingin disajikan semata-mata tergantung pada orientasi kendaraan. Jenis yang kedua adalah HMD, helm dipasang yang menampilkan HUD dimana elemen akan ditampilkan tergantung pada orientasi dari kepala pengguna.


2. Teknologi HUD


CRT (Cathode Ray Tube)

Hal yang sama untuk semua HUD adalah sumber dari gambar yang ditampilkan, CRT, yang dikemudikan oleh generator. Tanda generator mengirimkan informasi ke CRT berbentuk koordinat x dan y. Hal itu merupakan tugas dari CRT untuk menggambarkan koordinat senagai piksel, yaitu grafik. CRT membuat piksel dengan menciptakan suatu sinar elektonil, yang menyerang permukaan tabung (tube).


Refractive HUD

Dari CRT, sinar diproduksi secara paralel dengan sebuah lensa collimating. Sinar paralel tersebut diproyeksikan ke kaca semitrasnparan (kaca gabungan) dan memantul ke mata pilot. Salah satu keuntungan dari reaktif HUD adalah kemampuan pilot untuk menggerakkan kepalanya dan sekaligus melihat gambar yang ditampilkan pada kaca gabungan.


Reflective HUD

Kerugian dari HUD reflektif adalah akibatnya pada besarnya tingkat kompleksitas yang terlibat dalam meproduksi penggabungan lekungan dari segi materi dan rekayasa. Keuntungan besarnya adalah kemampuan pada peningkatan tanda brightness (terang), meminimalisir redaman cahaya dari pemandangan visual eksternal dan adanya kemungkinan untuk menghemat ruang di kokpit, karena lensa collimating yang tidak diperlukan.


System Architecture

HUD komputer mengumpulkan informasi dari sumber – sumber seperti IRS (Inertial Reference System), ADC (Air Data Computer), radio altimeter, gyros, radio navigasi dan kontrol kokpit. Diterjemahkan ke dalam koordinat x dan y, komputer HUD selanjutnya akan menyediakan informasi yang dibutuhkan untuk hal apa yang akan ditampilkan pada HUD ke generator simbol. Berdasarkan informasi ini, generator simbol menghasilkan koordinat yang diperlukan pada grafik, yang akan dikirmkan ke unit display (CRT) dan ditampilkan sebagai simbol grafik pada permukaan tabung.


Kebanyakan HUD militer mudah memberikan atau melewatkan isyarat kemudi FD melalui generator simbol. HUD memperhitungkan isyarat kemudi pada komputer HUD dan hal tersebut membuatnya sebagai sistem ‘standalone’. Sipil HUD merupakan fail-passive dan mencakup pemeriksaan internal yang besar mulai dari data sampai pada simbol generator. Kebanyakan perselisihan perhitungan dirancang untuk mencegah data palsu tampil.


Display Clutter

Salah satu perhatian penting dengan simbologi HUD adalah kecenderungan perancang untuk memasukkan data terlalu banyak, sehingga menghasilkan kekacauan tampilan. Kekacauan tampilan ini jauh dari eksklusif untuk HUD, tetapi hal ini sangat kritis pada saat melihat ke arah tampilan. Setiap simbologi yang tampil pada sebuah HUD harus melayani atau memiliki sebuah tujuan dan mengarahkan peningkatan performa. Kenyataannya, bukan piksel tunggal yang dapat menerangi kecuali dia secara langsung mengarahkan pada penigkatan. Prinsip yang diterapkan pada perancangan HUD adalah ‘ketika dalam keraguan, tinggalkan saja’.


3. Faktor Perancangan HUD

Ada beberapa faktor yang harus dipertimbangkan ketika merancang sebuah HUD, yaitu:

♣ Bidang penglihatan – Karena mata seseorang berada di dua titik berbeda, mereka melihat dua gambar yang berbeda. Untuk mencegah mata seseorang dari keharusan untuk mengubah fokus antara dunia luar dan layar HUD, layar adalah “Collimated” (difokuskan pada tak terhingga). Dalam tampilan mobil umumnya terfokus di sekitar jarak ke bemper.

♣ Eyebox – menampilkan hanya dapat dilihat sementara mata pemirsa dalam 3-dimensi suatu daerah yang disebut Kepala Motion Kotak atau “Eyebox”. HUD Eyeboxes modern biasanya sekitar 5 dengan 3 dari 6 inci. Hal ini memungkinkan pemirsa beberapa kebebasan gerakan kepala. Hal ini juga memungkinkan pilot kemampuan untuk melihat seluruh tampilan selama salah satu mata adalah di dalam Eyebox.

♣ Terang / kontras – harus menampilkan pencahayaan yang diatur dalam dan kontras untuk memperhitungkan pencahayaan sekitarnya, yang dapat sangat bervariasi (misalnya, dari cahaya terang awan malam tak berbulan pendekatan minimal bidang menyala).

♣ Menampilkan akurasi – HUD komponen pesawat harus sangat tepat sesuai dengan pesawat tiga sumbu – sebuah proses yang disebut boresighting – sehingga data yang ditampilkan sesuai dengan kenyataan biasanya dengan akurasi ± 7,0 milliradians.

♣ Instalasi – instalasi dari komponen HUD harus kompatibel dengan avionik lain, menampilkan, dll

Rabu, 10 Oktober 2012

PERKEMBANGAN DAN TREND KEDEPAN TELEMATIKA

Perkembangan telematika di zaman sekarang ini pastinya akan berkembang pesat sekali. Kebutuhan orang akan informasi tentang apapun sudah dapat didapat melalui internet. Surat kabar pun juga sudah di buat menjadi media digital yang beberapa diantaranya dapat di unduh secara gratis. Telpon genggam pun sekarang sudah berubah fungsi. Dari yang awalnya hanya untuk telepon dan sms saja, sekarang sudah bisa mengakses internet bahkan dengan kecepatan yang sangat cepat.

Didukung dengan teknologi-teknologi hebat yang telah di temukan sekarang ini, orang-orang jadi bisa mengembangkan dan terlebih lagi membuat teknologi yang baru lagi demi memudahkan orang mendapat suatu informasi. Banyaknya social media juga mempercepat penyebaran infromasi. Seluruh produsen teknologi juga sedang berlomba-lomba untuk membuat suat media yang berkualitas tinggi. Semua ini diperuntukan agar orang-orang mudah untuk mendapatkan informasi. Jadi, Perkembangan telematika akan terus meningkat setiap tahunnya karena kebutuhan orang-orang akan infromasi juga terus meningkat dan trend yang akan dihasilkannya pasti teknologi yang berbentuk portable.

Senin, 08 Oktober 2012

CARA KERJA WIRELESS


Bagaimana Cara Kerja Wireless atau NirkabelJaringan Wireless atau Nirkabel bekerja menggunakan gelombang radio sebagai pengganti cable untuk mengirimkan dan menerima data antara computer.
Bagaimana prinsip dasar Wireless?
Tentu Anda tahu bahwa Computer dalam melakukan pengiriman data digital dengan memanfaatkan prinsip binary : Satu dan Nol.  Cara berkomunikasi ini dapat diterjemahkan dengan baik dalam gelombang radio, karena computer dapat mengirimkan Satu dan Nol sebagai berbagai jenis bunyi Bip. Suara berbunyi Bip ini berjalan begitu cepatnya sehingga tidak akan terjangkau oleh sistem pendengaran manusia.
Jadi bagaimana cara kerja data dapat dikirimkan melalui gelombang radio – wireless?
Cara kerjanya sangat mirip sekali seperti Kode Morse, Tahu Kode Morse kan? Anda mungkin sudah tahu bahwa Kode Morse adalah cara untuk mewakili Huruf Alfabet sehingga dapat dikirim melalui Radio menggunakan Titik (Bip Pendek) dan Jeda (Jeda Panjang).  Hal ini sudah digunakan secara manual selama bertahun tahun lamanya dan menjadi cara yang bagus untuk dapat mengirimkan informasi dari satu tempat ke tempat yang lain dengan ditemukannya Telegraf.
Jadi bagaimana gambaran ringkasnya Wireless?
Secara ringkasnya, begini: Bayangkan saja, ada jaringan Wireless – Nirkabel untuk mengirimkan Kode Morse melalui Computer. Lalu di sisi penerima ada alat receiver yang harus melalui pemancar radio. Melalui alat alat tersebut Computer dapat mengirimkan data setara Titik dan Garis sehingga data dapat terkirim dari satu tempat ke tempat yang lainnya.
Jadi bagaimana computer dapat mengirimkan data dengan sistem wireless?
Teknologi Wireless ini adalah memanfaatkan Frekuensi yang sangat tinggi, yang akan memungkinkan pengiriman data yang banyak dalam satuan per detik. Umumnya koneksi Wireless menggunakan Frekuensi 2.4 Ghz ( 2400000000 siklus per detik ). Walaupun Frekuensi tinggi yang digunakan tapi panjang gelombangnya harus sangat pendek sehingga jaringan Wireless akan bekerja dalam coverage area yang terbatas.
Kalau banyak pengguna frekuensi untuk wireless bagaimana efeknya?
Teknologi Wireless ini menggunakan teknik yang dikenal sebagai Frekuensi Hopping. Terdapat puluhan Frekuensi yang dapat digunakan dalam suatu coverage area tertentu yang dapat digunakan berpindah pindah diantara puluhan Frekuensi tersebut. Cara ini membuat jaringan Wireless tidak rentan oleh adanya Interferense dari sinyal Radio Frekuensi lainnya, bila dibandingkan kita hanya memanfaatkan satu frekuensi yang sama terus menerus.
Apakah pemasangan wireless dengan pabrikan dari perusahaan yang berbeda dapat dilakukan?
Tentu dapat. Karena setiap pabrikan yang mengeluarkan produk wireless harus memenuhi standard yaitu standard 802.11 yang diatur oleh IEEE (Institue of Electrical and Electronics Engineers). Dengan adanya standard ini maka jaringan Wireless dapat digunakan semua orang dengan sangat mudahnya dan dengan biaya yang murah yang sudah dapat digunakan saat ini.

LAYANAN TELEMATIKA

1. Layanan Informasi

Layanan Informasi adalah penyampaian berbagai informasi kepada sasaran layanan agar individu dapat menolah dan memanfaatkan informasi tersebut demi kepentingan hidup dan perkembangannya. 

Tujuan Secara umum agar terkuasainya informasi tertentu sedangkan secara khusus terkait dengan fungsi pemahaman (paham terhadap informasi yang diberikan) dan memanfaatkan informasi dalam penyelesaian masalahnya. Layanan informasi menjadikan individu mandiri yaitu memahami dan menerima diri dan lingkungan secara positif, objektif dan dinamis, mampu mengambil keputusan, mampu mengarahkan diri sesuai dengan kebutuhannya tersebut dan akhirnya dapat mengaktualisasikan dirinya. 

2. Layanan Keamanan

Keamanan adalah suatu yang sangat penting untuk menjaga agar suatu data dalam jariangan tidak mudah hilang. Sistem keamanan membantu mengamankan jaringan tanpa menghalangi penggunaannya dan menempatkan antisipasi ketika jaringan berhasil ditembus. Keamanan jaringan di sini adalah memberikan peningkatan tertentu untuk jaringan. Peningkatan keamanan jaringan ini dapat dilakukan terhadap :

a.Rahasia (privacy)

Dengan banyak pemakai yang tidak dikenal pada jaringan menebabkan penyembunyian data yang sensitive menjadi sulit.

b. Keterpaduan data (data integrity)

Karena banyak node dan pemakai berpotensi untuk mengakses system komputasi, resiko korupsi data adalah lebih tinggi.

c. Keaslian (authenticity)

Hal ini sulit untuk memastikan identitas pemakai pada system remote, akibatnya satu host mungkin tidak mempercayai keaslian seorang pemakai yang dijalankan oleh host lain.

d. Convert Channel

Jaringan menawarkan banyak kemungkinan untuk konstruksi convert channel untuk aliran data, karena begitu banyak data yang sedang ditransmit guna menyembunyikan pesan.

3. Layanan context awere dan event base

Di zaman seperti sekarang ini sangat dibutuhkan suatu teknologi yang dapat memberikan kemudahan bagi user untuk mengakses informasi setiap saat kapan pun dan dimana pun mereka berada. Suatu teknologi yang disebut context-aware computing dapat memenuhi kebutuhan tersebut dan akan menjadi trend yang penting untuk dikembangkan di masa depan. Dengan adanya context aware maka user tidak perlu harus selalu memberi input yang banyak secara eksplisit untuk membuat komputer menjalankan tugasnya.

Context awareness adalah kemampuan sebuah sistem untuk memahami si user, network, lingkungan, dan dengan demikian melakukan adaptasi yang dinamis sesuai kebutuhan.

Karakteristik dari user, network, lingkungan itu disebut konteks. Namun informasi konteks sendiri menjadi kompleks dan heterogen sesuai jenis layanan yang akan didukung. Maka context awareness menjadi masalah yang besar dan menarik dalam pengembangan aplikasi, khususnya mobile, beberapa tahun ke depan.

Beberapa bagian yang lebih sederhana dari context awareness telah mulai dibangun. Misalnya LBS: location-based service. Misalnya, sewaktu user mencari keyword tertentu (pom bensin, kafe, ATM, dll), maka ia akan memperoleh hasil yang berbeda tergantung pada posisi user. Ini dapat mulai digabungkan dengan beberapa info dari user. Misalnya pom bensin atau kafe di dekat posisi user yang menerima pembayaran dengan ATM yang dimiliki user.

4. Layanan perbaikan sumber

adalah layanan perbaikan dalam sumber daya manusia (SDM). SDM telematika adalah orang yang melakukan aktivitas yang berhubungan dengan telekomunikasi, media, dan informatika sebagai pengelola, pengembang, pendidik, dan pengguna di lingkungan pemerintah, dunia usaha, lembaga pendidikan, dan masyarakat pada umumnya.

Konsep pengembangan sumber daya manusia di bidang telematika ditujukan untuk meningkatkan kualitas, kuantitas dan pendayagunaan SDM telematika dengan tujuan untuk mengatasi kesenjangan digital, kesenjangan informasi dan meningkatkan kemandirian masyarakat dalam pemanfaatan teknologi informasi dan komunikasi secara efektif dan optimal.

Kebutuhan akan SDM dapat dilihat dari bidang ekonomi dan bidang politik, yaitu :


Dilihat dari bidang ekonomi

Pengembangan telematika ditujukan untuk peningkatan kapasitas ekonomi, berupa peningkatan kapasitas industry produk barang dan jasa.

Dilihat dari bidang politik

Bagaimana telematika memberikan kontribusi pada pelayanan public sehingga menghasilkan dukungan politik.
Dari kedua bidang tersebut diatas kebutuhan terhadap telematika akan dilihat dari dua aspek, yaitu :

1. Pengembangan peningkatan kapasitas industry.
2. Pengembangan layanan publik.

Sasaran utama dalam upaya pengembangan SDM telematika yaitu sebagai berikut :

a. Peningkatan kinerja layanan public yang memberikan akses yang luas terhadap peningkatan kecerdasan masyarakat, pengembangan demokrasi dan transparasi sebagai katalisator pembangaunan.

b. Literasi masyarakat di bidang teknologi telematika yang terutama ditujukan kepada old generator dan today generation sebagai peningkatan, dikemukakan oleh Tapscott.


sumber : fikri-allstar.blogspot.com

ARSITEKTUR TELEMATIKA DAN KOLABORASI


Arsitektur Telematika merupakan struktur desain komputer dan semua rinciannya, seperti sistem sirkuit, chip, bus untuk ekspansi slot, BIOS dan sebagainya. Tiga elemen utama sebuah arsitektur, masing-masing sering dianggap sebagai arsitektur, adalah:
1. Arsitektur sistem pemrosesan
menentukan standar teknis untuk hardware, lingkungan sistem operasi, dan software aplikasi, yang diperlukan untuk menangani persyaratan pemrosesan informasi perusahaan dalam spektrum yang lengkap. Standar merupakan format, prosedur, dan antar muka, yang menjamin bahwa perlengkapan dan software dari sekumpulan penyalur akan bekerja sama.
2. Arsitektur telekomunikasi dan jaringan
menentukan kaitan di antara fasilitas komunikasi perusahaan, yang melaluinya informasi bergerak dalam organisasi dan ke peserta dari organisasi lain, dan hal ini juga tergantung dari standar yang berlaku.
3. Arsitektur data
sejauh ini merupakan yang paling rumit diantara ketiga arsitektur di atas, dan termasuk yang relatif sulit dalam implementasinya, menentukan organisasi data untuk tujuan referensi silang dan penyesuaian ulang, serta untuk penciptaan sumber informasi yang dapat diakses oleh aplikasi bisnis dalam lingkup luas.
Dengan kemajuan teknologi telekomunikasi dan teknologi informasi atau lebih dikenal dikenal dengan istilah Telematika atau dalam istilah asingnya ICT (Information and Communication Technology) menawarkan sesuatu yang pada awal perkembangan komputer sangatlah mahal yaitu mini komputer, workstation dan personal komputer yang memiliki kemampuan setara mainframe dengan harga yang jauh lebih murah.
Hal itu mendorong munculnya paradigma baru dalam pemrosesan data yaitu apa yang disebut Distributed Processing dimana sejumlah komputer mini komputer, workstation atau personal komputer menangani semua proses yang didistribusikan secara phisik melalui jalur jaringan komunikasi.
A. Arsitektur Telematika sisi Client
istilah ini merujuk pada pelaksanaan atau penyimpanan data pada browser (atau klien) sisi koneksi HTTP. JavaScript adalah sebuah contoh dari sisi klien eksekusi, dan cookie adalah contoh dari sisi klien penyimpanan.
Karakteristik Client :
* Selalu memulai permintaan ke server.
* Menunggu balasan.
* Menerima balasan.
* Biasanya terhubung ke sejumlah kecil dari server pada satu waktu.
* Biasanya berinteraksi langsung dengan pengguna akhir dengan menggunakan antarmuka pengguna seperti antarmuka pengguna grafis. Khusus jenis klien mencakup: web browser, e-mail klien, dan online chat klien.
B. Arsitektur Telematika sisi Server
Adalah sebuah eksekusi sisi server Web khusus yang melampaui standar metode HTTP yang harus mendukung. Sebagai contoh, penggunaan CGI script di sisi server khusus yang tertanam di tag halaman HTML; tag ini memicu suatu tindakan kejadian atau program untuk mengeksekusi.
Karakteristik Server:
* Selalu menunggu permintaan dari salah satu klien.
* Melayani klien permintaan kemudian menjawab dengan data yang diminta ke klien.
* Sebuah server dapat berkomunikasi dengan server lain untuk melayani permintaan klien.
* Jenis server khusus mencakup: web server, FTP server, database server, E-mail server, file server, print server. Kebanyakan layanan web ini juga jenis server.
C. Kolaborasi Arsitektur Telematika sisi Client dan Server
Berikut ini adalah penjelasan mengenai beberapa kolaborasi arsitektur sisi client dan sisi server :
1. Arsitektur Single- Tier
Arsitektur Single- Tier adalah semua komponen produksi dari sistem dijalankan pada komputer yang sama. Sederhana dan alternatifnya sangat mahal. Membutuhkan sedikit perlengkapan untuk dibeli dan dipelihara.
2. Arsitektur Two-tier
Pada Arsitektur Two-tier, antarmukanya terdapat pada lingkungan desktop dan sistem manajemen database biasanya ada pada server yang lebih kuat yang menyediakan layanan pada banyak client. Pengolahan informasi dibagi antara lingkungan antarmuka sistem dan lingkungan server manajemen database.
3. Arsitektur Three-tier
Arsitektur Three-Tier diperkenalkan untuk mengatasi kelemahan dari arsitektur two-tier. Di tiga tingkatan arsitektur, sebuah middleware digunakan antara sistem user interface lingkungan client dan server manajemen database lingkungan. Middleware ini diimplementasikan dalam berbagai cara seperti pengolahan transaksi monitor, pesan server atau aplikasi server. Middleware menjalankan fungsi dari antrian, eksekusi aplikasi dan database staging.